133 research outputs found

    On monotonicity of regression quantile functions

    Get PDF
    In the linear regression quantile model, the conditional quantile of the response, Y, given x is QY|x(τ)≡x′β(τ). Though QY|x(τ) must be monotonically increasing, the Koenker–Bassett regression quantile estimator, View the MathML source, is not monotonic outside a vanishingly small neighborhood of View the MathML source. Given a grid of mesh δn, let View the MathML source be the linear interpolation of the values of View the MathML source along the grid. We show here that for a range of rates, δn, View the MathML source will be strictly monotonic (with probability tending to one) and will be asymptotically equivalent to View the MathML source in the sense that n1/2 times the difference tends to zero at a rate depending on δn

    A Partially Linear Censored Quantile Regression Model for Unemployment Duration

    Get PDF
    Censored Regression Quantile (CRQ) methods provide a powerful and flexible approach for the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models, where one (or more) of the explanatory variables are assumed to act on the response through a non-linear function. Here the CRQ approach (Portnoy, 2003) is extended to such partially linear setting. Basic consistency results are presented. A simulation experiment and analysis of unemployment data example justify the use of the partially linear approach over methods based on the Cox proportional hazards regression model and methods not permitting nonlinearity.quantile regression ; partially linear models ; B-splines ; censored data ; unemployment duration

    M-estimation of multivariate regressions

    Get PDF
    Includes bibliographical references (p.19-20)

    Exact Probability Bounds under Moment-matching Restrictions

    Full text link
    Lindsay and Basak (2000) posed the question of how far from normality could a distribution be if it matches kk normal moments. They provided a bound on the maximal difference in c.d.f.'s, and implied that these bounds were attained. It will be shown here that in fact the bound is not attained if the number of even moments matched is odd. An explicit solution is developed as a symmetric distribution with a finite number of mass points when the number of even moments matched is even, and this bound for the even case is shown to hold as an explicit limit for the subsequent odd case

    Partially linear censored quantile regression

    Get PDF
    Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates are assumed to act on the response through a non-linear function. Here the CRQ approach of Portnoy (J Am Stat Assoc 98:1001–1012, 2003) is extended to this partially linear setting. Basic consistency results are presented. A simulation experiment and unemployment example justify the value of the partially linear approach over methods based on the Cox proportional hazards model and on methods not permitting nonlinearity

    Global impact and cost-effectiveness of one-dose versus two-dose human papillomavirus vaccination schedules: a comparative modelling analysis

    Get PDF
    Background: To eliminate cervical cancer as a public health problem, the World Health Organization had recommended routine vaccination of adolescent girls with two doses of the human papillomavirus (HPV) vaccine before sexual initiation. However, many countries have yet to implement HPV vaccination because of financial or logistical barriers to delivering two doses outside the infant immunisation programme. Methods: Using three independent HPV transmission models, we estimated the long-term health benefits and cost-effectiveness of one-dose versus two-dose HPV vaccination, in 188 countries, under scenarios in which one dose of the vaccine gives either a shorter duration of full protection (20 or 30 years) or lifelong protection but lower vaccine efficacy (e.g. 80%) compared to two doses. We simulated routine vaccination with the 9-valent HPV vaccine in 10-year-old girls at 80% coverage for the years 2021–2120, with a 1-year catch-up campaign up to age 14 at 80% coverage in the first year of the programme. Results: Over the years 2021–2120, one-dose vaccination at 80% coverage was projected to avert 115.2 million (range of medians: 85.1–130.4) and 146.8 million (114.1–161.6) cervical cancers assuming one dose of the vaccine confers 20 and 30 years of protection, respectively. Should one dose of the vaccine provide lifelong protection at 80% vaccine efficacy, 147.8 million (140.6–169.7) cervical cancer cases could be prevented. If protection wanes after 20 years, 65 to 889 additional girls would need to be vaccinated with the second dose to prevent one cervical cancer, depending on the epidemiological profiles of the country. Across all income groups, the threshold cost for the second dose was low: from 1.59 (0.14–3.82) USD in low-income countries to 44.83 (3.75–85.64) USD in high-income countries, assuming one dose confers 30-year protection. Conclusions: Results were consistent across the three independent models and suggest that one-dose vaccination has similar health benefits to a two-dose programme while simplifying vaccine delivery, reducing costs, and alleviating vaccine supply constraints. The second dose may become cost-effective if there is a shorter duration of protection from one dose, cheaper vaccine and vaccination delivery strategies, and high burden of cervical cancer

    Evaluation of gait symmetry in poliomyelitis subjects : Comparison of a conventional knee ankle foot orthosis (KAFO) and a new powered KAFO.

    Get PDF
    Background: Compared to able-bodied subjects, subjects with post polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry. Objectives: The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop- locked knee ankle foot orthosis (KAFO) or a newly developed powered KAFO. Methods: Seven subjects with poliomyelitis who routinely wore conventional KAFOs participated in this study, and received training to enable them to ambulate with the powered KAFO on level ground, prior to gait analysis. Results: There were no significant differences in the gait symmetry index (SI) of step length (P=0.085), stance time (P=0.082), double limb support time (P=0.929) or speed of walking (p=0.325) between the two test conditions. However, using the new powered KAFO improved the SI in step width (P=0.037), swing time (P=0.014), stance phase percentage (P=0.008) and knee flexion during swing phase (p≤0.001) compared to wearing the dropped locked KAFO. Conclusion: The use of a powered KAFO for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage and knee flexion during swing phase

    The diagnosis and management of anaphylaxis practice parameter: 2010 Update

    Get PDF
    These parameters were developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the Joint Council of Allergy, Asthma and Immunology. The AAAAI and the ACAAI have jointly accepted responsibility for establishing “The Diagnosis and Management of Anaphylaxis Practice Parameter: 2010 Update.” This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, or the Joint Council of Allergy, Asthma and Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion

    Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world.

    Get PDF
    BackgroundVaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries.MethodsTwenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios.ResultsWe estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases.ConclusionsThis study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future.FundingVIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication
    corecore